

'Edelstahl' Balgzylinder Einfachwirkend Ø 8 bis 14 1/2 inches (Ø 220 bis 400 mm)

- Edelstahl-Endplatten
- Reibungsfreie Bewegung
- Wartungsfreier Betrieb
- Ideal für kurze Hübe bei großen Kräften
- Hervorragende Schwingungsdämpfung
- Einfacher Einbau, keine Ausrichtungsprobleme

Betriebsmedium:

Ungeölte Druckluft

Wirkungsweise:

Einfachwirkend

Betriebsdruck:

8 bar max.

Betriebstemperatur

- 40°C bis + 70°C für KM/31000 (Standard)
- 25°C bis + 90°C für TKM/31000 (Butyl)
- 20°C bis + 115°C für EKM/31000 (Epichlore)

Nenndurchmesser:

8, 10, 12, 14 1/2, inches

Hublängen:

Von 80 bis 380 mm max., abhängig vom Balgdurchmesser und der Anzahl der Faltenbälge

Material:

Endplatten: Edelstahl 1.4301 Gewindebolzen: Edelstahl 1.4301 Stützring: Edelstahl 1.4301

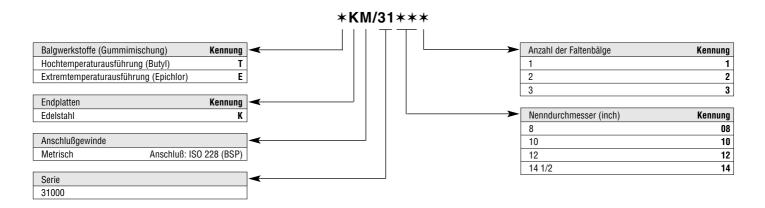
Balg: KM/31000 NR-, SBR-, BR-Werkstoffe

TKM/31000 Butyl-Werkstoff EKM/31000 Epichlor-Werkstoff

Achtung:

Die Konstruktion der Balgzylinder erlaubt eine Schrägstellung der Endplatte zwischen 5° und 25°. Abhängig von der Arbeitshöhe des Balgzylinders und der Anzahl der Faltenbälge können obere und untere Endplatten versetzt eingebaut werden. Beide Endstellungen (min./max.) müssen durch Anschläge begrenzt werden. Der Rückhub muß zwangsweise erfolgen. Die Kraft des Balgzylinders hängt direkt mit seiner jeweiligen Höhe zusammen. Generell gilt: je größer die Höhe, desto kleiner die Kraft. Da sich der Außendurchmesser während des Betriebs verändert, ist ein genügend großer Einbauraum vorzusehen. Bei manchen Anwendungen (z. B. bei Hebebühnen) sind die entsprechenden UVV-Bestimmungen zu beachten.

Bestellbeispiel Siehe Seite 2

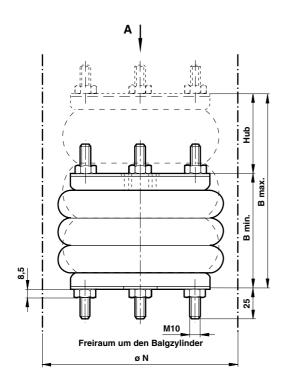


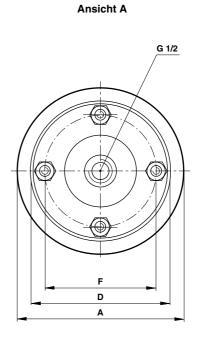
Alternative Balgzylinder

Symbol	Тур	Beschreibung		Abmessungen
		Balgwerkstoff		Seite
Z \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	KM/31000	Standard	Ø 8 bis 14 1/2 inches	3
	TKM/31000	Butyl	Ø 8 bis 14 1/2 inches	3
	EKM/31000	Epichlor	Ø 8 bis 14 1/2 inches	3

Typenschlüssel

Achtung: Nicht benutzte Stellen bitte aufrücken, z. B.


Bestellbeispiel

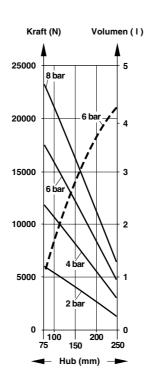

Balgzylinder – KM/31082 'Edelstahl' Balgzylinder, Balgwerkstoff Standard, Nenndurchmesser 8 inch, 2 Faltenbälge

Grundabmessungen

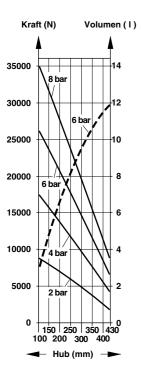
KM/31081 bis KM/31143

Tabelle 1

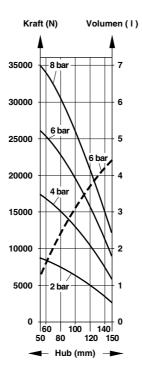
Тур	Nenn- Ø	Hub	Einbauhöhe						Gewicht
	(inch) x		B min.	B max.					
	Faltenbälge	(mm)	(mm)	(mm)	ØΑ	ØD	ØF	ØN	(kg)
KM/31081	8 x 1	80	50	130	230	184	155,5	245	6,4
KM/31082	8 x 2	175	75	250	220	184	155,5	245	7,3
KM/31101	10 x 1	100	50	150	280	210	181	300	8,5
KM/31102	10 x 2	225	75	300	270	210	181	300	9,7
KM/31103	10 x 3	330	100	430	270	210	181	300	10,9
KM/31121	12 x 1	100	50	150	330	260	232	350	13,2
KM/31122	12 x 2	225	75	300	325	260	232	350	14,8
KM/31123	12 x 3	330	100	430	325	260	232	350	16,3
KM/31141	14 1/2 x 1	125	50	175	395	310	282,5	425	18,6
KM/31142	14 1/2 x 2	265	75	340	400	310	282,5	425	19,6
KM/31143	14 1/2 x 3	380	100	480	400	310	282,5	425	20,5

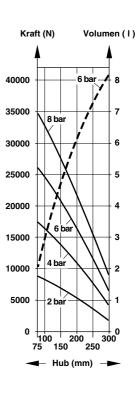

Kraft (bei 2, 4, 6, 8 bar), Volumen (bei 6 bar)

-- Kraft (N) -- Volumen (I)


KM/31081

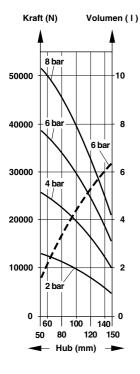
25000 8 bar 2,5 20000 6 bar 2,0 15000 1,0 1,0 2 bar 0,5 2 bar 0,5 4 bar 2,5 4 bar 2,0 4 bar 3,0 4 bar 3,0

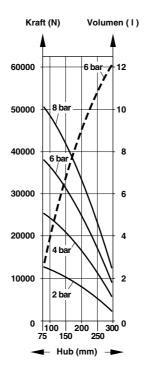

KM/31082


KM/31101

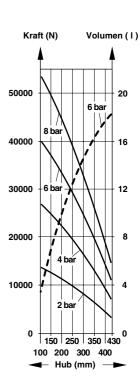
KM/31102

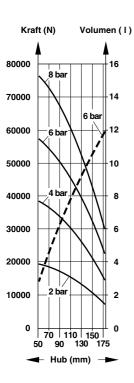
KM/31103

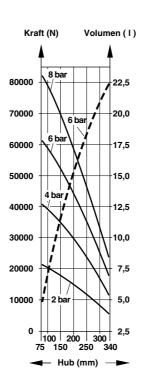


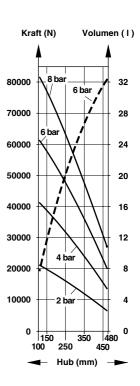

Kraft (bei 2, 4, 6, 8 bar), Volumen (bei 6 bar)

- Kraft (N) -- Volumen (I)


KM/31121


M/31122


M/31123


M/31141

M/31142

M/31143

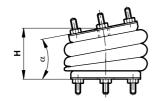
Auswahl eines Balgzylinders als Zylinder

Datenblatt

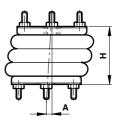
a) Gewicht der zu hebenden Last:	$F = kg \cdot 10 \text{ m/s}^2 =[N]$	f) Vorhandene minimale Einbauhöhe:	$Xv = \dots [mm]$
b) Anzahl der verwendeten Balgzylinder:	n =	g) vorhandener Einbauraum:	Xh =[mm]
c) benötigte Kraft pro Balgzlinder:	$f = \frac{F}{n} = = [N]$	h) Umgebungs- bzw. Arbeitstemperatur:	T =[°C]
d) vorhandener Arbeitsdruck::	P = [bar]	i) Schrägstellung der Endplatte	$\alpha = \dots [^{\circ}]$
e) benötigte Hublänge	S =[mm]	j) Versatz der oberen zur unteren Endplatte	A =[mm]
		k) chemische Anforderungen	

Wichtig

Kraft: Die Kraft des Balgzylinders hängt direkt mit seiner jeweiligen Höhe zusammen. Je größer die Höhe – desto kleiner die Kraft.


Anschläge: Beide Endstellungen müssen durch Anschläge begrenzt werden.

Einbauraum: Der Balgzylinder benötigt ausreichend Einbauraum.


Tabelle 2: Kraft, Einbauhöhe, Rückzugskraft, Installation

Тур	Nenn- Ø	Hub	Einbauhöhe	Kraft	Externe Kraft um den	Einbauhöhe	Kraft
	(inch) x		B min.	bei 6 bar	Zylinder auf min. Ein-	B max.	bei 6 bar
KM/31081	8 x 1	80	50	18600	120	130	5350
KM/31082	8 x 2	175	75	17700	130	250	4550
KM/31101	10 x 1	100	50	26500	100	150	9000
KM/31102	10 x 2	225	75	26350	100	300	6450
KM/31103	10 x 3	330	100	26600	110	430	6500
KM/31121	12 x 1	100	50	39000	90	150	15000
KM/31122	12 x 2	225	75	38500	90	300	8550
KM/31123	12 x 3	330	100	40600	100	430	10900
KM/31141	14 1/2 x 1	125	50	57600	80	175	21550
KM/31142	14 1/2 x 2	265	75	62000	80	340	16900
KM/31143	14 1/2 x 3	380	100	62550	290	480	19200

Schrägstellung der Endplatten

Versatz

Tabelle 3

Тур	Nenn- Ø (inch) x	Höhe H (mm) I	oei				Höhe H (mm) bei				
	Faltenbälge	α=5°	α=10°	α=15°	α=20°	α=25°	A=10 mm	A=20 mm	A=30 mm	A=40 mm	A=50 mm
M/31081	8 x 1	60-105	70-100	_	_	_	65-115	70-95	_	_	_
M/31082	8 x 2	_	90-210	100-205	110-200	115-190	95-230	95-220	115-210	130-195	l —
M/31101	10 x 1	60-125	70-115	80-105	_	_	70-135	80-130	90-115	_	l —
M/31102	10 x 2	_	95-260	115-250	135-245	155-235	105-280	125-275	145-265	170-250	_
M/31103	10 x 3	185-390	245-370	280-350	_	_	165-390	200-380	220-365	230-350	240-345
M/31121	12 x 1	60-125	75-115	90-105	—	—	70-135	80-130	90-115	_	l —
M/31122	12 x 2	_	100-255	110-245	115-235	160-225	105-270	130-260	150-245	175-230	l —
M/31123	12 x 3	200-375	230-340	250-310	_	_	150-400	175-385	195-375	215-360	235-345
M/31141	14 1/2 x 1	65-145	85-135	_	_	_	85-160	95-145	105-125	_	_
M/31142	14 1/2 x 2	_	105-300	115-290	135-275	170-260	120-330	140-320	165-315	185-305	_
M/31143	14 1/2 x 3	280-430	300-390	310-370	_	_	180-450	205-440	225-425	245-410	260-385

Auswahl eines Balgzylinders Beispiel: als Zylinder zu verwenden

Ein Förderband hat ein Gewicht von 1.000 kg. Es muß eine 550 kg schwere Palette um 80 mm auf ein höheres Niveau heben. Vier Balgzylinder sollen verwendet werden. Der Arbeitsdruck ist 5 bar. Die Umgebungstemperatur beträgt 60°C. Für jeden Balgzylinder ist ein Einbauraum von 270 x 270 mm vorgesehen. Endanschläge für die unterste und oberste Stellung sind vorhanden. Die Einbauhöhe beträgt 85 mm. Während des Hubes kann in der zweiten Hubhälfte eine Schrägstellung von max. 9° auftreten:

Schritt 1: Ausfüllen des Datenblattes:

a) $F = (1000 \text{ kg} + 550 \text{ kg}) \bullet 10 \text{ m/s}^2 = 15500 \text{ N}$ f) Xv = 85 mm b) n = 4 g) Xh = 270 mm c) $f = \frac{F}{n} = \frac{15}{4} \frac{500 \text{ N}}{4} = 3875 \text{ N}$ h) $T = 60^{\circ}\text{C}$ d) P = 5 bar i) $\alpha = 9^{\circ}$ e) S = 80 mm j) A = 0 mm

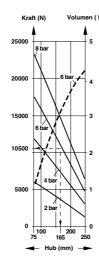
k) normale Umgebungseinflüsse

Schritt 2: Aus Tabelle 1. (Seite 3) müssen Balgzylinder ausgesucht werden, die min. 80 mm Hub haben und einen max. Einbauraum von 270 x 270 m benötigen.

Ausgesucht werden: KM/31081 und KM/31082

Schritt 3: Berechnen der Gesamthöhe, bis zu welcher der Balgzylinder benötigt wird:

 Einbauhöhe:
 Xv
 85 mm


 Hub:
 S
 80 mm

 Gesamthöhe:
 165 mm

Beim Vergleich der Gesamthöhe von 165 mm und der Einbauhöhe von 85 mm kann nur KM/31082 (Einbauhöhen 75 bis 250 mm) verwendet werden – siehe Tabelle 1 (Seite 3).

Schritt 4: Kontrolle der Kraft bei 6 bar und einer Höhe von 165 mm.

Aus dem Katalogblatt 2.3.185-4 können wir entnehmen

KM/31082 wir erhalten 10500 N bei 6 bar.

Umrechnung auf 5 bar:

$$\frac{10500 \text{ N} \cdot 5}{6} = 8750 \text{ N bei 5 bar}$$

Ergebnis: Der Balgzylinder erreicht die benötigte Kraft von 3875 N.

Schritt 5: Überprüfen des zulässigen Winkels, bei dem der Balgzylinder zwischen 125 und 165 mm Hubhöhe betrieben werden darf. Aus Tabelle 3 (Seite 6) werden für diesen Höhenbereich 10°. Schrägstellung der Endplatten entnommen, d. h. der Winkel von 9° liegt unterhalb diese Maximalwertes.

i) KM/31082 erlaubt einen Winkel von 9° zwischen 95 und 260 mm Hub. Balgzylinder KM/31082 ist für diese Anwendung geeignet.

Schritt 6: Kontrolle der verbleibenden Angaben

- h) Der Standard Gummiwerstoff (- 40°C bis + 70°C) kann bei den geforderten + 60°C verwendet werden
- j) Kein Versatz der oberen zur unteren Platte
- k) Es wird keine speziell chemische Beständigkeit benötigt.

Ergebnis: Der Balgzylinder KM/31082 wird gewählt, da es alle Anforderungen erfüllt.

Auswahl eines Balgzylinders als Schwingungsdämpfer

Datenblatt

a) Gesamtgewicht,

 $\text{das gedämpft werden soll:} \qquad \qquad \text{F = kg } \bullet \text{ 10 m/s}^2 = [N] \qquad \text{g) Umgebungs- bzw. Arbeitstemperatur:} \qquad \text{T =} \\ \text{g^{\circ}C]}$

b) Anzahl der verwendeten Balgzylinder: n = h) Chemische Anforderungen

d) vorhandener Arbeitsdruck: $P = \dots [bar]$ j) Eigenfrequenz des Balgzylinders: $fn = \dots [Hz]$

e) vorhandene min. Einbauhöhe: Xv =[mm] k) Störfrequenz: fe =[Hz]

f) vorhandener Einbauraum: Xh = [mm]

Wichtig

• Wegen des größeren Luftvolumens dämpfen Balgzylinder mit 2 Faltenbälgen besser als Einfaltenbälge.

Balgzylinder, die zur Schwingungsdämpfung benutzt werden, sollten im Bereich der Vibrationshöhe arbeiten.
 Diese Höhe wurde durch Tests ermittelt und bietet das beste Dämpfungsverhalten des Balgzylinders.
 Die Eigenfrequenz des Balgzylinders bleibt in dieser Vibrationshöhe nahezu konstant. Bei größerer Höhe steigt die Eigenfrequenz (d. h. schlechtere Schwingungsdämpfung), bei geringerer Höhe sinkt die Querstabilität.

• Der optimale Druck zur Schwingungsdämpfung liegt zwischen 4 und 6 bar (60 bis 90 psi).

Je niedriger die Eigenfrequenz (fn) des Balgzylinders, desto besser ist die Schwingungsdämpfung

 Die Seitenstabilität nimmt mit steigender Zahl der Faltenbälge ab. Daher sollten Balgzylinder mit 3 Faltenbälgen nicht verwendet werden.

• Ideal ist, die Balgzylinder in derselben Höhe anzubringen, wie der Massenschwerpunkt der zu dämpfenden Maschine

Folgende Vereinfachungen haben sich aus der Praxis als ausreichend erwiesen und wurden für die Berechnung zugrunde gelegt:

1. Die Schwingungen sind nur in vertikaler Richtung

2. Die Erregerfrequenz (Störfrequenz) variiert auf einer Sinuskurve

3. Die zu dämpfende Maschine und deren Unterlage sind steif

Tabelle 4: Druck, Vibrationshöhe, Kraft, Volumen, Steifigkeit, Eigenfrequenz Balgzylinder, Isolationsgrad

Тур	Nenn- Ø (inch) x	Druck	Vibrationshöhe	Kraft	Volumen	Steifigkeit	Eigenfrequenz Balgzylinder	Isolationsgrad
	Faltenbälge	(bar)	(mm)	(N)	(l)	(N/cm)	fn (Hz)	bei10 Hz und 6 bar
KM/31081	8 x 1	4	100	7250	1,90	2379	2,86	91,1
		6	100	1105	1,96	3421	2,77	91,6
KM/31082	8 x 2	4	200	5450	3,54	882	2,00	95,8
1111/01002	UNZ	6	200	8400	3,66	1281	1,95	96,0
KM/31101	10 x 1	4	120	10450	3,53	2710	2,54	93,1
144701101	10 % 1	6	120	15800	3,69	3850	2,46	93,5
KM/31102	10 x 2	4	220	9600	6,44	1254	1,80	96,6
NW/31102		6	220	14550	6,67	1788	1,75	96,8
KM/31121	12 x 1	4	120	16250	5,12	4130	2,51	93,3
KIVI/31121		6	120	24550	5,28	5880	2,44	93,7
KM/31122	12 x 2	4	220	14650	9,52	2000	1,84	96,5
KIVI/31122	12 1 2	6	220	22250	9,85	2850	1,78	96,7
KM/31141	14 1/4 x 1	4	130	26250	8,97	5590	2,30	94,4
KIVI/31141		6	130	39400	9,28	7840	2,22	94,8
KM/31142	14 1/4 x 2	4	250	23800	17,8	2640	1,66	97,2
NW/31142		6	250	35600	18,4	3730	1,61	97,3
KM/31143	14 1/4 x 3	4	370	22350	27,0	1630	1,35	98,2
KIVI/31143	14 1/4 X 3	6	370	33650	27,5	2330	1,31	98,3

Keine Werte für 3-Faltenbälge. Sie sollten nicht zur Schwingungsdämpfung verwendet werden.

.....

Beispiel zur Auswahl eines Balgzylinders als Schwingungsdämpfer

Ein Hydraulikaggregat mit einer Erregerfrequenz (fe) zwischen 1200 und 3000 Umdrehungen/min. (= 20 Hz bis 50 Hz) soll schwingungsgedämpft werden. Das Aggregat wiegt 6000 kg und steht auf einer Platte von 1,2 m x 0,8 m. Die Gerätetemperatur beträgt 50°C. Die vorhandene Einbauhöhe ist 220 mm. Vier Balgzylinder sollen verwendet werden. Der max. mögliche Arbeitsdruck beträgt 6 bar. Der erforderliche Isolationsgrad liegt bei min. 97%.

Schritt 1: Ausfüllen des Datenblattes:

c) f =
$$\frac{F}{R} = \frac{60000 \text{ N}}{4} = 15000 \text{ N}$$

d)
$$P = 6 ba$$

f)
$$Xh = 400 \text{ mm}$$

g) Normal environment

h) T = 50° C

i) I = 97%

j) fn = select from table 4

k) fe min. = 20 Hz, fe max. = 50 Hz

Drei Größen der Balgzylinder werden gewählt. Jeder der vier Balgzylinder muß 15000 N in der Vibrationshöhe tragen können. Aus Tabelle 4 (Seite 8) wird gewählt:

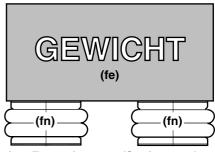
1. KM/31101 - 15800 N bei 6 bar - 2,46 Hz Eigenfrequenz des Balgzylinders (fn)

2. KM/31121 - 16250 N bei 4 bar - 2,51 Hz Eigenfrequenz des Balgzylinders (fn)

3. KM/31122 - 22250 N bei 6 bar - 1,78 Hz Eigenfrequenz des Balgzylinders (fn)

Schritt 2: Um den besten Isolationsgrad zu erzielen, wird der Balgzylinder mit der niedersten Eigenfrequenz fn = 1,78 Hz bei 20 Hz gewählt: KM/31122

Schritt 3: Berechnen des Isolationsgrades (I) des Balgzylinders KM/31122 mit folgender Formel:


Formel

$$I = 1 - \frac{1}{\left(\frac{fe}{fn}\right)^2 - 1}$$

Beispiel

$$= 1 - \frac{1}{\left(\frac{20}{1.78}\right)^2 - 1} = 1 - \frac{1}{125,2} = 0,992$$

$$I = 99,2\%$$

fe = Erregerfrequenz (Störfrequenz) des Aggregats

fn = Eigenfrequenz des Balgzylinders

Schritt 4: Kontrolle der verbleibenden Angaben

- e) Die Einbauhöhe des Balgzylinders KM/31122 beträgt B min = 75 mm und B max = 300 mm (Tabelle 1) Die vorhandene Einbauhöhe beträgt 220 mm. Die günstigste Vibrationshöhe ist 220 mm (Tabelle 4)
- f) Als Einbauraum stehen 400 x 400 mm für jeden der vier Balgzylinder zur Verfügung, benötigt werden nur 350 mm (Tabelle 1.3)
- h) Bei 50°C Gerätetemperatur kann der Standard Balgwerkstoff (-40°C bis +70°C) verwendet werden.
- g) Keine besondere Anforderung
- i) Der Isolationsgrad bei 10 Hz und 6 bar beträgt I = 96,7% (Tabelle 4). Bei 20 Hz und 6 bar ist I = 99,2%.

Ergebnis: 4 Balgzylinder KM/31122 werden ausgewählt. Sie erreichen einen Isolationsgrad von 99,2%

Sicherheitshinweise

Diese Produkte sind ausschließlich in industriellen Druckluftsystemen zu verwenden. Sie sind dort einzusetzen, wo die unter »**Technische Merkmale**« aufgeführten Druckund Temperaturwerte nicht überschritten werden. Berücksichtigen Sie bitte die entsprechende Katalogseite.

Vor dem Einsatz der Produkte mit Flüssigkeiten sowie bei nicht industriellen Anwendungen, in lebenserhaltenden- oder anderen Systemen, die nicht in den veröffentlichten Anleitungsunterlagen enthalten sind, wenden Sie sich bitte direkt an Norgren. Durch Missbrauch, Verschleiß oder Störungen können in Hydrosystemen verwendete Komponenten auf verschiedene Arten versagen.

Systemauslegern wird dringend empfohlen, die Störungsarten aller in Hydrosystemen verwendeten Komponententeile zu berücksichtigen und ausreichende Sicherheitsvorkehrungen zu treffen, um Verletzungen von Personen sowie Beschädigungen der Geräte im Falle einer solchen Störung zu verhindern.

Systemausleger sind verpflichtet, Sicherheitshinweise für den Endbenutzer im Betriebshandbuch zu vermerken, wenn der Störungsschutz nicht ausreichend gewährleistet ist.

Systemauslegern und Endbenutzern wird dringend empfohlen, die den Produkten beigelegten Sicherheitsvorschriften einzuhalten.